Navigating the Future of Connectivity

Overview | September 2020

Networking for Autonomous Vehicles

Autonomous Vehicles: The Dawn of a New Era in Automotive Self-Driving Mode 48 Trust of humans in machine-driven vehicle Challenge Secured system with no failures of critical applications Requirement

Solution

Built in redundancy for critical components and connectivity

NIAV'Alliance

Sensor Fusion & Rich Data Drive Bandwidth To Multi-Gig

Cameras

Increasing resolution from 720p to 4K and improving dynamic range

Multi-Gigabit/s of raw bandwidth

Hres	Vre	s Fps	8bit	12bit	16bit	20	bit	24bit	
1280	720) 30	0,22	0,33	0,44	0,55		0,66	
1280	108	0 30	0,33	0,50	0,66	0,83		1	
1280	720	60	0,44	0,66	0,88	1,11		1,33	
1920	108	0 30	0,50	0,75	1,00	1,24		1,49	
1280	108	0 60	0,66	1,00	1,33	1,66		1,99	
1920	108	0 60	1,00	1,49	1,99	2,49		2,99	
3840	216	0 30	1,99	2,99	3,98	4,98 5,97		5,97	
3840	216	0 60	3,98	5,97	7,96	9,95 11,94		11,94	
100BASE-T1		1000BASE- T1	Multi Ethern Gb	-Gig net 2,5 ps	Multi-Gig Ethernet 5 Gbps		Multi-Gig Ethernet 10 Gbps		
No Use C	ase	Available	Spee	Speed grades which are currently discussed					

Sensor Fusion

Moving processing of data from sensors to centralized GPU

Multi-Gigabit/s data over the network

_

Connecting IT All Together Reliably and Securely

NAV: Alliance Networking for Autonomous Vehicles

Autonomous Vehicles Networking Additional Requirements

	Reliability	Security
Requirements	 Zero failures for functional-critical systems Failsafe: failure doesn't jam the network Failover: failure triggers backup device operation System operation under harsh conditions (temperature, humidity, dust,) Reliable operation over long life cycle 	 Prevent unauthorized remote control of the vehicle – whether physically on the vehicle or through the air Protection from data hacking Defend from system software harmful modifications
Solutions	 Redundancy through multiple data paths Scalable to Multi-Gig speeds Mature HW/SW stack 	EncryptionPHY-layer SecuritySecure boot

Industry-Wide Effort Required to Define Next-Gen Multi-Gig Technology

We call it Networking for Autonomous Vehicles : NAV

Founded by

AQUANTIA BOSCH Ontinental SINUDIA VOLKSWAGEN

GROUP OF AMERICA

Leading car manufacturers, system and component suppliers in the automotive market

Purpose

To provide a platform for the automotive industry to develop the next generation of in-vehicle network infrastructure for autonomous vehicles and facilitate wide deployment of networking technologies and products, ensuring interoperability, security and reliability of the network.

Objectives

- Develop the ecosystem for next generation Multi-Gig Ethernet automotive networking
- Create procedures and specifications to insure interoperability, security and reliability of the network
- Promote best practices and solutions that adhere to the new specifications
- Establish standards body liaisons
- Build marketing activities to build awareness and educate the market place and users

TWG1/TWG2 : 25G/50G Automotive Ethernet PHY Specifications and EMC Requirements

Scope – TWG1: This project is to create Physical Layer specifications and Management Parameters for 25Gbps and 50Gbps electrical interfaces for automotive Ethernet networks.

Scope – TWG2: Specification of the EMC requirements and limits for communication channels between two Ethernet Ports (inclusive the PHY) at speeds higher than 10Gbps.

Chairman: Ramin Farjad, Marvell

TWG3 – Physical Layer System and Component Integration

Scope: This project is to specify the integration of an Automotive Multi-Gig PHY in an Automotive Electronic Control unit (ECU) or an Electronic Vehicle Computer (EVC).

Chairman: Olaf Grau, Bosch

TWG4 – Protocol Encapsulation for Ethernet

Scope: This WG defines standard encapsulation of various protocols within Ethernet frames in a backwards compatible manner. The initial target protocols for encapsulation are I2C, SPI, CSI2 and for example Radar, Lidar applications.

Chairman: Hari Parmar, Marvell

TWG5 – System Controls and Management

Scope: This WG defines how to interface the IVN (In-Vehicle Network) components and its features with respect to manageability. Therefore, it identifies recommendations associated with hardware and software-based interfaces that are supporting systems used for autonomous vehicles. The WG elaborates also on an automotive network management protocol that includes additional considerations including enhanced diagnosis, predictive maintenance, redundancy, Quality of Service, wake-up and sleep and device management.

Chairman: Helge Zinner, Continental

Thank you.

Networking for Autonomous Vehicles